MATERIALS THAT DRIVE

Chemical Influences on the Reliability of Complex Assemblies

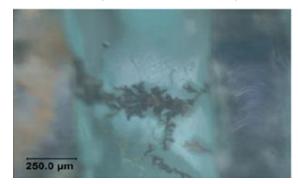
ELECTRONIC ASSEMBLY

SEMICONDUCTOR

Bruno Tolla, Ph.D Global R&D Dr. – Kester Inc. btolla@kester.com

Reliability Failure Modes

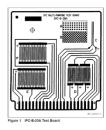

Dendrites

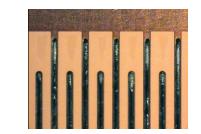

Corrosion

Deposits

But also Conductive Anodic Filament (CAF), Creep Corrosion, Tin Whiskers, Black Pads,...

- ✓ Current leakage
- Shorts
- Circuit Damaging
- Insulating deposits (relays, contacts)
- ✓ Cosmetic aspects




Reliability Tests

Outcome is flux classification

Biased Tests – Applied V

Standard	Method	Temp °C / %RH	Test Voltage	Bias Voltage	Test Duration (hrs)	Test Board
IPC J-STD-004B	IPC TM650 2.6.3.3	85 / 85	-100	50	168	IPC B24
	IPC.TM650 2.6.3.7	40 / 90	12.5	12.5	72	IPC B24
	IPC ECM TM650 2.6.14.1	65 / 88.5	45 - 100	10	596	IPC B25A Pattern D
Bellcore GR-78-Core	SIR 13.1.3	35 / 85	100	45 - 50	96	IPC B25A Pattern D
	ECM 13.1.4	65 / 85	45 - 100	10	596	IPC B25A Pattern D
JIS Z 3197	SIR 8.5.3	(A) 40 / 90 (B) 85 / 85	100	0	168	IPC B25A Pattern D
	ECM 8.5.4	(A) 40 / 90 (B) 85 / 85	100	45 - 50	1000	IPC B25A Pattern D
BONO	Inventec: MO.SB.10029 Pc after 15 days	85 / 85	12	20	360	BONO Board

- Unbiased Tests
 - Quantitative Halides
 Cu Mirror (as is)
 *23C / 50% RH / 24h

Cu Corrosion (residue) *40C/93% RH/10d

Confounded Testing outputs

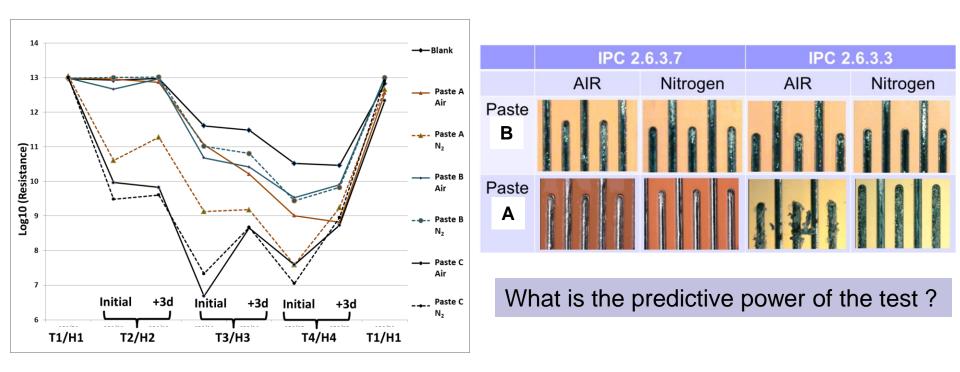
As defined by IPC J-STD-004B

Cu Corrosion: A chemical reaction between the copper, the solder, and the flux <u>residues</u> that occurs after soldering and during exposure to the above* environmental conditions

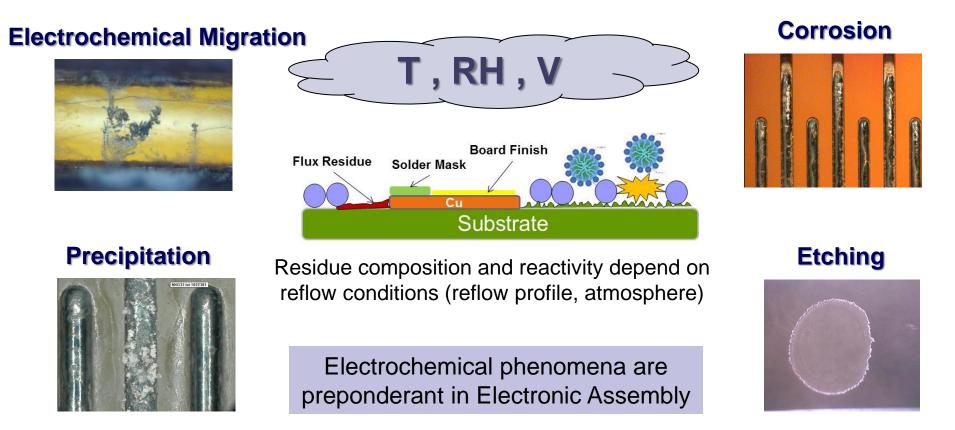
* § 2.6.15C – 40C - 93%RH - 10d

- Cu Mirror: Corrosive properties of the flux in ambient conditions**
 ** § 2.3.32D 23C 50%RH 24h
- SIR: Electrical resistance of an insulating material btw conductors determined under a specified environment***

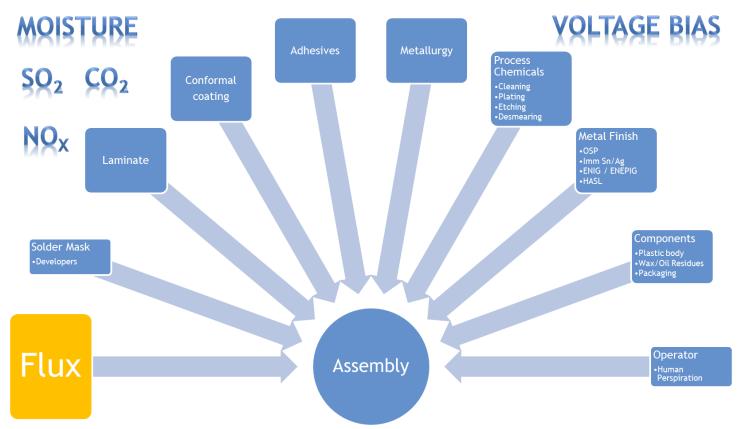
```
*** § 2.6.3.3 85C - 85%RH - 50V - 7d
*** § 2.6.3.7 40C - 90%RH - 12.5V - \geq3d
```


 <u>ECM</u>: Growth of conductive metal filaments under the influence of a DC voltage bias by electrodeposition
 §2.6.14.1 65C - 88.5%RH - 10V - 25d

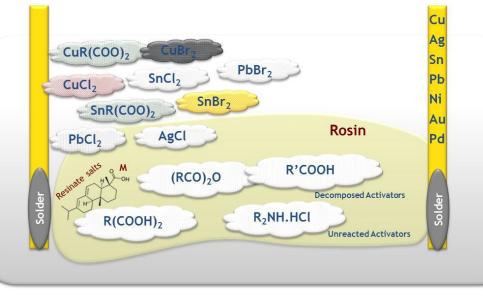
ECM and SIR tests include Corrosion and ECM (filament growth) failures R values affected by ions, residue hygroscopicity, dendritic growth, corrosion,...

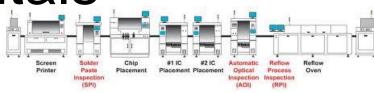

Test variability

 Preparation procedure (reflow profile, atmosphere) and environmental conditions (T,RH,V) are critical parameters among others



 Failures result from the interaction of <u>post-reflow residues</u> with board components under environmental stress




Chemical Complexity of a Printed Circuit Board coupled with a large set of environmental conditions

1. Process residues formation

	Compound	Water solubility (g/100cc)	Color	
	CuCl ₂	75.7	Brown	
	CuCl	0.006	Green	
	CuBr ₂	55.7	Black	
	CuBr	Very Slightly	White	
	SnCl ₂	83.9	White	
	SnBr ₂	85.2	Pale Yellow	
	PbCl ₂	1	White	
	PbBr ₂	0.8	White	
	$CuOH_2$ / $CuCO_3$	Insoluble	Green	

Unconsumed activators
 Fluxing reaction products
 Interactions by-products

 $\begin{array}{l} Cu_2O+\ 2HCI \rightarrow CuCl_2+Cu+H_2O\\ Cu_2O+\ R(COOH)_2 \rightarrow CuR(COO)_2+Cu+H_2O\\ R(COOH)_2 \rightarrow \ (RCO)_2+H_2O, \ 2R'COOH\\ Rosin \rightarrow Resinate \ salts, \ White \ Residues \ (oxidized) \end{array}$

- 2. Residues reaction under Environmental stress
 - Moisture Absorption
 - Hydrolysis
 - Carbonation

 $CuBr_2 + 4H_2O \rightarrow CuBr_2.4H_2O$

Flux Residue

T , RH , V

Substrate

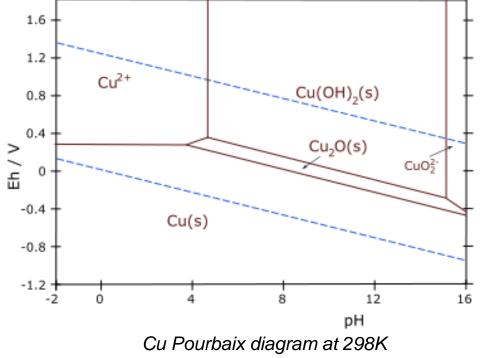
Solder Mask

 $SnCl_2 + 2H_2O \rightarrow Sn(OH)_2 + 2HCI$

 $PbCl_2 + CO_2 + H_2O \rightarrow PbCO_3 + 2HCI$

- 3. Corrosion of Metallic compounds
 - Oxidation
 - Complexation

 $Cu \rightarrow Cu^+ + e^- [E_0=0.52V]$


 $Cu^+ + Cl^- \rightarrow CuCl \text{ [pKs=6.7]}$

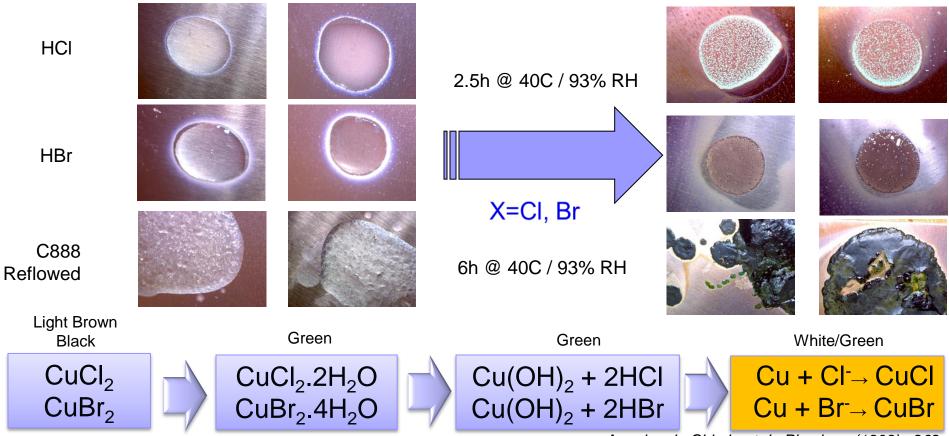
Strong Cu complexes catalyze Metal Oxidation

$$Cu + Cl^{-} \rightarrow CuCl + e^{-} [E_0 = 0.14V]$$

10⁻³М Си

Acidic condition favor Cu Corrosion vs passivation

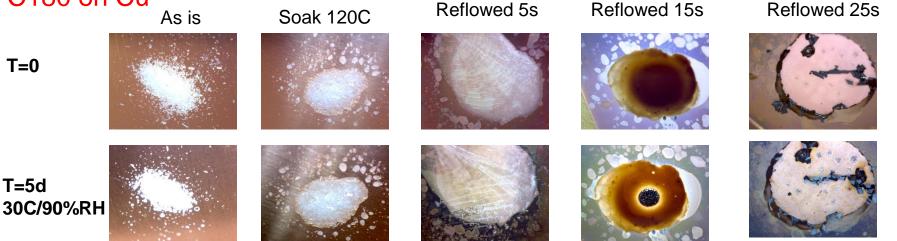
Cu CL CuCE 0,*50 Cu²⁺ 0/40 Cu Cl. Q^V30 Cu Cli 0,720 0,40 Cuł 0,000 pCł 0 2 4 -1


> Impact of Cl⁻ species on Cu Redox Potentials 10⁻²M Cu²⁺

Strong Cu complexation catalyzes Cu corrosion

Corrosion Example - Halides

Reactivity On Cu – Unbiased test



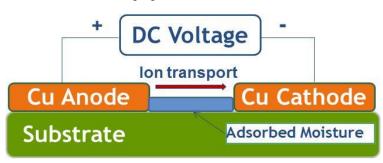
Annales de Chimie et de Physique (1903) p262

Corrosion Example - Halogens

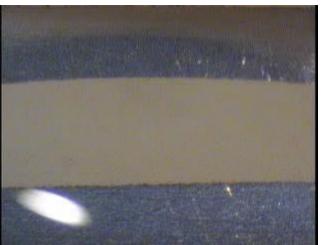
C180 on Cu

C180 on Cu / Solder

T=0



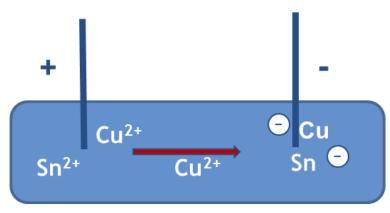
T=5d 30C/90%RH



Reliability Fundamentals Electrochemical Migration

Electrochemical process where metal ions move between adjacent metal conductors through an electrolyte solution under an applied electric field.

- 3 Basic ingredients
 - Moisture, Voltage bias, Ions
- 5 Sequential steps
 - Path formation \rightarrow Electrodissolution \rightarrow Ion transport
 - \rightarrow Electrodeposition \rightarrow Dendritic growth

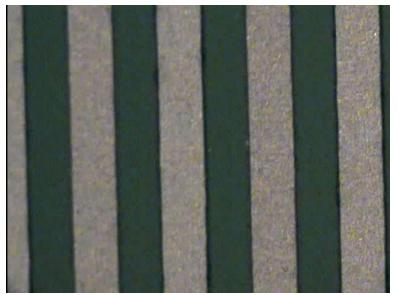


Reliability Fundamentals Electrochemical Migration

- Redox potentials are not a good predictor for dendritic growth
 - Pb vs Sn ability to form dendrites, Ag dendrites easy formation

 Ni ²⁺ /Ni	Pb ²⁺ /Pb Sn ²⁺ /Sn	Cu ²⁺ /Cu	Ag⁺/Ag	Pd ²⁺ /Pd	Au ³⁺ /Au	Standard Electrode Potential
-0.25	-0.13	0.34	0.80	0.91	1.83	E _o (V)

- Three concurrent mechanisms needed to grow a dendrite
 - Strongly influenced by residue chemistry


- 1. Formation of conductive water films at the surface of the epoxy laminate
- 2. Metal corrosion
- 3. Stabilization of charged metal complexes between the polarized electrodes

ECM Example

Customized ECM Test [IPC B25 (Cu-FR4) / 38V/mm]

DI Water

 $Cu \rightarrow Cu^{2+} + 2e^{-} [E_0 = 0.16V]$

0.25M NaOH Solution

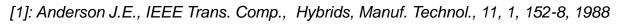
 $Cu + 4OH^{-} \rightarrow CuO_2^{2^{-}} + 2H_2O + 2e^{-}$

 $2H_2O + 2e^- \rightarrow H_2 + 2OH^- [E_0=0.0 V]$

ECM Example - Halides

Path formation

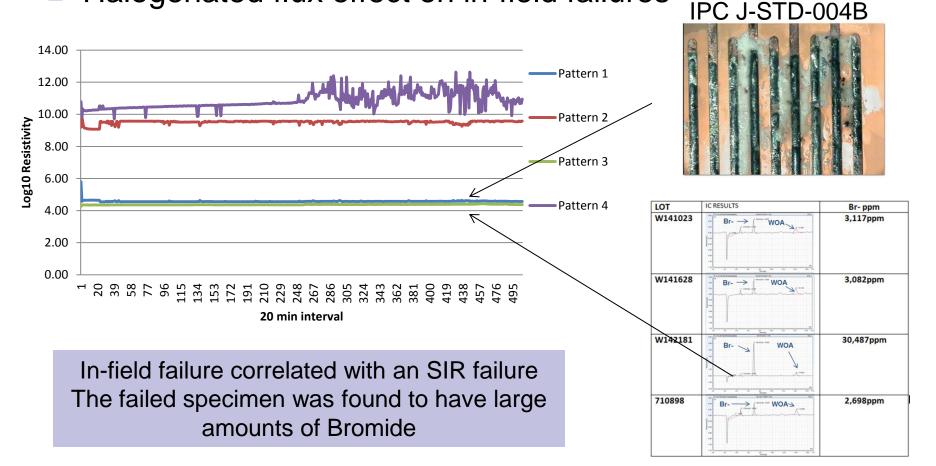
- Water film thickness and conductivity derive from the hygroscopic and ionic nature of the residue [1]
- Electrodissolution


 $Cu + Cl \rightarrow CuCl$

- Corrosiveness of halogenated residues demonstrated earlier
- Ion Transport
 - Halides generate a large array of stable complexes

CuCl₂⁻, CuCl₃²⁻ CuCl₄²⁻, CuCl₃⁻,CuCl⁺

0.25M HCI Solution



Real-life Example

Halogenated flux effect on in-field failures

Non-Halogenated Fluxes

Zero-halogen solutions can also induce Corrosion or ECM

0.5M Halogen-Free Salt Solution

Conclusion

- Reliability failures result from the interaction of <u>post-reflow residues</u> with board components under environmental stress
- The traditional Rosin-based approaches to protect the assembly against any chemical influence are limited
- Two basic chemical processes best model the interaction between the activators and their environment:
 - □ Corrosion (in its broadest definition)
 - Electrochemical Migration
- Based on these two mechanisms, we demonstrated the profound influence of the residue chemistry on the reliability failures
- Our mechanistic study also highlights the harmful effects of halogens in activator packages
- Zero-halogen solutions represent the future of Electronic Assembly
 - Fundamental knowledge of chemical influences is required to avoid similar effects as with Halogenated systems